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The terminal problem for the optimal control (OC) oLa linear system with constant coefficients and two controls whose level 
of influence on the system are very different is considered. In the first section the basic problem-optimization methods, previously 
developed by the authozs, are used to construct solutions for systems with a small controlling perturbation (weak control). In 
the second section a sysl:em with a large coefficient in front of the control (strong control) is considered and its solution is also 
constructed using the solution of the basic problem. 

The algorithms presented below for the asymptotic solution of optimization problems for dynamical 
systems with controlling forces of differing strengths follow the classical perturbation scheme. In essence 
they reduce the original problem to a simpler, basic problem and a relatively straightforward correction 
to the solution of the latter. Other kinds of optimal control problems that can be efficiently solved by 
the method used below are given in [1-6]. 

1. A S Y S T E M  W I T H  W E A K  C O N T R O L  

In the class of piecewise-continuous controlling actions u(t), ~(t), t ~ T = [0, t.] we consider the 
following problem for the optimal control (OC) of a linear stationary system 

J(u, u) = c'x(t.) ~ max (1.1) 

i = Ax + blU +Ixb2a~, x(0) = x ° (1.2) 

lu(t) l~<l, Iv(t) l~<l, t e  T (1.3) 

Itx(to) = g (1.4) 

where IX is a small positive parameter, u, a~ are scalars, x is an n-vector, g is an m-vector (m < n), 
and the remaining elements of the problem have the appropriate dimensions. We assume that 
rankH = m.  

The piecewise-continuous functions u(t, Ix), ~(t, Ix), t ~ T are called admissible controls in the problem 
under consideration if they and the trajectories of system (1.2) that they generate satisfy conditions 
(1.3) and (1.4). The admissible control for which the quality criterion J(u, ~) reaches its maximum value 
is called the OC./along with these familiar concepts we shall define what we mean by asymptotic 
approximations to the solution of this problem. 

Definitions. The  family of piecewise-continuous functions u(t, Ix), a~(t, Ix), t e Tis said to be an asymp- 
totically k-admissible control if they satisfy condition (1.3) and if the trajectories x(t, IX), t ~ T of 
system (1.2) which they generate satisfy the termination condition (1.4) with accuracy to O(ixk+l). 
An admissible (as3~ptotieally k-admissible) control is said to be asymptotically s-optimal if the 
discrepancy of its quality criterion from that of the optimal control is of order O(ixs+l). 

This section presents an algorithm which for any given natural number s enables one to construct 
an asymptotically s-admissible s-optimal control for the problem under consideration. It also describes 
a numerical procedure which uses this asymptotic approximation to solve problem (1.1)-(1.4) exactly 
for a given value of the small parameter. 
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The  first stage of  the algori thm consists of  solving the following terminal  control  problem 

Jo(u) = e'x(t .)  ---> max, 

I u(t) I ~< 1, 

i = A x + b l  u, x ( 0 ) = x  0 

t e  T, H x ( t , ) = g  
(1.5) 

which we shall call the basic problem.  

Assumption 1.1 Problem (1.5) has a solution and is "s imple"  [7]. 
Then,  solving it using the direct support  me thod  [1], we obtain the following: 
1. the OC and trajectory u°(t), x°(t), t e T; 
2. the optimal  support  {ri1, • • • ,  rim}, i.e. a set of  m points in the interval ]0, t.[ such that  the 

( m x  m)  matrix 

(I~ 1 = (~01(rij) , j = 1, 2 , . . . ,  m )  (1.6) 

which is known as the support  matrix, is non-degenera te ,  where  

~01(t ) = H r ( t ) b l ,  t ~ T (1.7) 

and F(t), t ¢ T is an (n x n)  matr ix funct ion satisfying the differential  equat ion 

F = - F A ,  F(t . )  = E; (1.8) 

3. the vector  of  potentials X~ = c'1O11, where  cl = (Tl(rij), J = 1, 2, . . . , m) ' ,  Tl(t) = eT( t )b i ,  
t ~  T; 

4. the cocontrol  Al(t ) = ~?6(t)bl, t ~ T constructed f rom the solut ion W0(t), t ~ T of  the conjugate 
system V0 = -A'~0,  ¥0(t*) = c -  H'X0. 

The  cocontrol  is re la ted to the opt imal  control  by the relat ion u°(t) = sgn Al(t), t e T and possesses 
the following property:  Al(rij) = 0, Al(rij) # 0 ( j  = 1, 2 . . . . .  m).  We shall denote  all the zeros of  the 
cocontrol  by t01 . . . .  , tot, arranging them in increasing order .  Because they include the support  times, 
we have 1 1> m. 

Assumption 1.2. toj ~ ]0, t.[, A1 (tq) # 0 (j  = 1, 2 . . . . .  1). 
Then  the t imes t01 . . . .  , tot are precisely the switching t imes for  the OC. 

Remark. The choice of the direct support method to solve the basic problem is explained by the fact that as well 
as giving the OC, it also gives additional information for constructing the asymptotic limit. Moreover, the algorithm 
to be described and the direct support method can be implemented with almost the same assumptions about the 
basic problem. The direct support method is applicable to "simple" problems. Hence, if problem (1.5) can be solved 
by these methods, then Assumption 1.1 is satisfied. The basic problem does not of course have to be solved by the 
direct support method. If another method is used, it is convenient to replace Assumption 1.1 with the following: 
the OC in problem (1.5) has at least m switching points, which include the points 111 . . . . .  ~,n for which matrix 
(1.6) is non-degenerate. 

Af ter  solving the basic p rob lem we find the zeros ' goD. . . ,  '~0p of  the function A2(t) = ¥0(t)b2, t ~ T, 
numbered  in increasing order .  

Assumption 1.3. I f p  I> 1 then x~ ~ ]0, t.[, A2(z0/) # 0, i = 1, 2 . . . .  ,p .  
We introduce the numbers  or0, o q , . . . ,  at, ~ ,  131, • • • 13p: a0 = sgn AI(0), ~ = - ~ - 1  (J = 1, 2 , . . . ,  1); 

13o = sgn A2(0), I~i = -13i-1 (i = 1, 2 , . . . ,  p) .  We denote  by ¥(t ,  X), t ~ T, X ~ R m the trajectory of  the 
conjugate system 

= - A ' v ,  ~F(t.) = c - H'~. (1.9) 

Suppose fur ther  that  tl . . . . .  tt, "gl, • • ,  , "gp are numbers  in the interval ]0, t.[ such that  tl < t2 < • • • 
< tl, Xl < x2 < • • • < x.. We deno te  by'u(i ,  tl, • • • ,  tl), x)(t, xl, • • • ,  x), t ~ T a two-level controll ing 
action that switches at (he points t l , . . . ,  tl, " q , . . . ,  xp and takes the values a0, ~ ,  rcspectively, in the 
first constancy interval. The  t rajectory of  system (1.2) genera ted  by this control  is deno ted  by 
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X(t, h . . . . .  tl, Xl . . . . .  Xp, St), t ~ T. Subsequent calculations are based on the assertion formulated below. 

T h e o r e m  1. If Assumptions 1.1-1.3 are satisfied, then for sufficiently small St the OC in problem 
(1.1)--(1.4) has the form 

u ° ( t ,  St) = u ( t ,  t , (S t ) ,  . . . , t l (S t ) )  , D°( t ,  St) = • ( t ,  'gl(St), • • • , ' gp(St))  (1.10) 

The switching points of the OC and the associated normal vector of Lagrange multipliers ~.(St) solve 
the system of equations 

Hx(t., h ,  . . . , tl, x l ,  . . . , xp, St) - g = 0 (1.11) 

~lt'(tj, ~.)b 1 = O, j = 1, 2 , . . . ,  l ,  ~ / ' (x j ,  L)b2 = O, (i = 1, 2 , . . . , p )  

and can be expanded asymptotically 

m 

tj(st)- ~ St%, 
k=O 

i = 1, 2 . . . .  , p ;  

j = ~ 2, . . . ,  t; ~j(st)- ~s t*~  
k=O 

x(st)- ~st% 
k=O 

(1.12) 

P r o o f .  Let N(tl,.  . . . .  tl, "C, . . . . .  "gp, St) = Hx(t*, tl . . . . .  tl, ' g l , "  ' ' ,  'gp, St) - -  g. By the Cauchy formula 
we have 

N(tl, "--, tt, ~1, "", ~,, St) = No(tp ''-, tt)+stNl(q:l, "'', ~,) 
t I t. 

= HF(0)x ° + a o I { P , ( t ) d t  + . . .  + a t l c P x ( t ) d t - g  
0 t I 

+St f$o ~P2(t) d t +  . . .  + ~ ,  ¢P2(t)  d t  (1.13) 
lp 

where F(t), t e T are matrix functions which solve Eq. (1.8), q~l(t), t ~ T are given by formula (1.7) 
and 

qrz(t) = HF(t)b.z, t e T (1.14) 

To shorten the equations we introduce the vectors 

h" = (tl . . . . .  tl, ~ , ,  . . . , "[p,  ~ , ' ) ,  

System (1.11) can be written in the form 

R(h, St) = 0 

R(h, Ix)= V'(tj, ~,)b I 
¥ ' ( t  i, ~,)b2 

h'o = (to,  . . . . .  tot, Xo , , .  • • ,  xop, Xb) 

j = l ,  2, . . . ,  1 

i = l ,  2 , . . . , p  

(1.15) 

(1.16) 

According to formula (1.13) we have 

R(h, ~t) = Ro(h ) + StRl(h) 

No(q ..... t t ) 

Ro(h)=  W'(ty,~.)b I, 

~1/' ('~i, X)b2, 
j=l,2 ..... I I , 
i=I,2 ..... p 

In'  10 I 
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We put R(h, 0) = Ro(h). Then the vector function R(h, Ix) is continuous together with its partial 
derivatives with respect to the components of the vector h in the domain II h - ho I1 < ~, O ~< Ix < Bo, 
where e, Ixo are sufficiently small positive numbers. 

The control u°(t), t ~ T is admissible in the basic problem, and so N o ( t i n , . . . ,  tol) = Hx°(t*) - g = 0. 
Because ~t(t, ko) = Vo(t), t e T we have ~(toj, ~o)bl = Ax(toj) = 0 (j = 1, 2 , . . . , / ) ;  ~(to/, ~o)b2 = 
A2('C0/) = 0 (i = 1, 2 . . . .  , p).  Thus S(ho, 0) = R0(ho) = 0. 

We verify by direct differentiation that the Jacobi matrix has the form 

If 0 011 I, aR(h°' O)_aRo(ho) = ' 
= ah /)h 2 0 B 3 (1.17) 

B4 B5 

where 

B 1 = -(2~91(toj) ,  

B4 = d iag(A2(%/) ,  

j = 1 , 2 , . . . , 1 ,  

B 3 ---- --(~01(t0j), 

i = 1 ,2  . . . . .  p), 

B 2 ---- diag(hl(toj), j = 1, 2 . . . .  ,/) 

j = 1, 2 , . . .  ,I) '  

B5 = - ( ~ ( x ~ ) ,  i = 1 , 2  . . . . .  p)" 

(1.18) 

The matrix (91(t0j),j = 1, 2 . . . .  , l) has complete rank because it contains the non-degenerate support 
matrix (1.6) as a submatrix. It follows from this and from Assumptions 1.2 and 1.3 that the Jacobi matrix 
(1.17) is non-degenerate. 

Hence system (1.16), or equivalently, (1.11), satisfies all the conditions of the implicit function theorem. 
According to this theorem, in some right-sided neighbourhood of  zero 0 ~< I1 < IX1 there are uniquely 
defined continuous functions tj(ix) (j = 1, 2 , . . . ,  1), xj(ix) (i = 1, 2 . . . . .  p)  k(ix) satisfying system (1.11) 
such that tj(O) = toj (j = 1, 2 , . . . ,  l), xi(O ) = "[Oi (i = 1, 2 . . . .  ,p ) ,  k(0) = ~ .  

I n  other words, for sufficiently small Ix, problem (1.1)--(1.4) has an admissible control uU(t, Ix), 
~°(t, Ix), t e T of the form (1.10) and a Lagrange vector ~,(Ix) such that the switching points u°(t, Ix), 
t ~ T and ~°(t, Ix), t ~ T are, respectively, zeros of the functions Al(t, Ix) = ~( t ,  Ix)b1, A2(t, Ix) = 
~'(t, Ix)b2, t e T constructed from the solution ¥(t, Ix), t e T of  the conjugate system (1.9) with 

Because R0(h), Rl(h) are infinitely-differentiable functions, we have the asymptotic expansions 
(1.12). Using Assumptions (1.2) and (1.3) together with the implicit function theorem we verify that 
the cocontrol Al(t, Ix), t ~ T vanishes only at the point ti(Ix ) (j = 1, 2 , . . . . 1 ) ,  while A2(t, Ix), t ~ T has 
no zeros other than xi(Ix) (i = 1, 2, . . . ,  p) ,  with u°(t, ~ = sgn Al(t, Ix), u°(t, Ix) = sgn A2(t, Ix), t ~ T. 
The latter means that an admissible control u°(t, Ix), ~°(t, Ix), t ~ T satisfies the Pontryagin maximum 
principle [8] with the normal Lagrange multiplier vector 2~(Ix), and is therefore the OC. The theorem 
is proved. 

We choose a positive integer s. In order to construct an asymptotically s-admissible s-optimal control 
for problem (1.1)-(1.4) it is sufficient to find the polynomials 

s (s -1) 
k,~ ", t~*)(Ixl= ~ I x k t ~ ,  j =  l, 2 . . . .  ,1; X~-I)(Ix)= ~_~Ix ~, i :  l, 2, . .  p (1.19) 

k=0 k=O 

This can be done as follows. Let 

h" t =(tkj  . . . . .  ttt, xtl . . . . .  x k , , ~ t ) ,  h,(ix)= ~ Ixkh~ 
k=O 

We expand the vector function R(h,(IX), IX) in powers of Ix to order s inclusive using Taylor's formula 
and equate the coefficients of  the expansions to zero (beginning with the coefficient of Ix). As a result 
we obtain non-degenerate systems of  linear equations which sequentially determine the vectors hk (k 
= l ,  2 , . . . , s )  

~RI ~ 2 R  o 1 
Ilhl =-Rl(ho)' IIh2 = -  (ho)h! - 2  hl ~ - ~  "(h°)hl .... (1.20) 

~h 
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We note that in view of the structure (1.17) of the Jacobi matrix I1 these systems decouple. In particular, 
the vector X1 is found as a solution of the system BIB2-1B3X1 = Nl(X0x . . . . .  'lop), and tlj = Xl~l(toj)/ 
/~l(toj ) (j = 1, 2 , . . . ,  l). 

Solving system (1..20) sequentially we find the vectors hk (k = 1, 2 . . . .  , s) and construct the oolynomials 
(1.19). The control u~(t, ~t) = u(t, tl (~) (~ t ) , . . . ,  tff  ) (~t) ), a~_l(t, ~t) = u(t, "ll (s-1)(~t) . . . .  , x(p~-r~ ((l) ), t ~ T 
will obviously be art asymptotically s-admissible, s-optimal control for problem (1.1)--(I.4). 

The constructed asymptotic approximations to the roots of system (1.6) can be used to solve this system 
numerically, which :means, in the problem under considerations, for a specified value of I1. This requires 
the use of a refining procedure [1], i.e. using Newton's method for finding the roots of system (1.16) 
taking hs(P-) as the initial approximation. 

2. A SYSTEM W I T H  S T R O N G  C O N T R O L  

In the class of piecewise-continuous controls u(t), ~(t), t e T = [0, t.] we consider the optimal control 
problem 

J(u, a)) = c'x(t.) ---> max, x. = Ax + blu + b21~/p., x(0) = x ° 

lu(t) l ~ l ,  la~(t) l~<l ,  t e  T I - Ix( t . )=g 
(2.1) 

where, as before, ~t is a small positive parameter, u, ~ are scalars, x is an n-vector, and g is an m-vector 
(m < n). We assume that rank It  = m. 

We will describe an algorithm which for any specified positive integer s enables us to construct an 
asymptotically s-adt~ssible s-optimal control for problem (2.1). This control is defined in the same way 
as for problem (1.1)-(1.4). 

The notation in this section is independent of that of the preceding one: the same symbol may in 
general denote diffqzrent quantities. However, there is an analogy between quantities for which we use 
the same symbol. 

In this case the basic problem has the form 

.I0(~) = c'x(t.) ~ max, x = Ax + baY, x(0) = 0 

lao(t) l~< 1, t e  T, H x ( t . ) = 0  
(2.2) 

Assumpt ion  2.1. Problem (2.2) is "simple". 
Solving this problem by the direct support method we obtain 
1. the OC and the trajectory ~°(t), x°(t), t e T; 
2. the optimal support {Ol . . . . .  ore} and the associated non-degenerate support matrix 

O2 = (~o2(oi), i = 1, 2 . . . . .  m) (2.3) 

where qr2(t), t ~ T is the m-vector function defined by formula (1.14); 
p • 1 3. the vector of the potentials L0 = c 20~,  where e2 = (72(6i), i = 1, 2 , . . . ,  m)', y2(t) = c'F(t)b2, 

t e T, and the (n x n) matrix function F(t), t E T satisfies Eq. (1.8); 
4. the cocontrol A2(t) = ¥0(t)b2, t ~ T constructed from the solution ¥0(t), t e T of the conjugate 

system ~/0 = -A'~0, ¥0(t.) = c - H'X0. 
The cocontrol, coupled to the OC through the relation ~°(t) = sgn A2(t), t e T, has the property A2(6i) 

=O,  A 2 ( o i ) # O , i =  1,2 . . . . .  m. 

Remark. Assumption 2.1 can be replaced by the following: the OC in problem (2.2) has at least m switching 
points, including the points 61 . . . . .  6m at which matrix (2.3) is non-degenerate. 

Suppose "101 . . . . .  '10p are all the zeros of the cocontrol, in increasing order. It is clear tha tp  I> m. 

Assumpt ion  2.2. xo/e ]0, t.[, 2il (x0j) ~ 0 (i = 1, 2 , . . . ,  p). 
Then "101 . . . . .  "10p are the switching points of the control ~°(t), t ~ T. 
After solving the basic problem we find the zeros t01,... ,  to/of the function Al(t) = ¥0(t)bl, in increasing 

order. 
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A s s u m p t i o n  2.3. If 1 I> 1, then toj ~ ]0, t.[, A1 (t0j) ~ 0 (j = 1, 2 . . . . .  l). 
We introduce the numbers a0, ix1,.. •, at. ~ ,  I~1, • • •, 13~ and two-level controls u(t ,  t l , . . . ,  tl), ~(t,  

xl,. • . ,  xp), t ~ Tas in the preceding section. Suppose, as before, that ¥(t, ~.), t ~ T, k ~ R m are trajectories 
of the conjugate system (1.9). We denote by x(t, tl . . . .  , tl, Xl, . . . , '~p, Ix), t ~ T the trajectories of the 
dynamical system in problem (2.1) generated by the control u(t ,  tl . . . . .  tt), u(t ,  xl, . . . .  xp), t ~ T. T h e  
algorithm for constructing the asymptotic behaviour of the solution of problem (2.1) is based on the 
following assertions. 

Theorem 2. When Assumptions 2.1-2.3 are satisfied, the OC for problem (2.1) is of the form (1.10) 
for sufficiently small Ix. The switching points for this OC and the associated normal vector of Lagrange 
multipliers X(Ix) satisfy the system of equations 

Ix(I-Ix(t., tl . . . .  , t b X 1 . . . . .  "Cp, Ix) - g --- 0 

~ ( t j ,  ~,)bl = 0, j = 1, 2 . . . . .  l, ¥'(~i, ~,)b2 = 0, i = 1, 2 , . . . , p  
(2.4) 

and have an asymptotic expansion (1.12). 
Proof. We put K(tl . . . .  , tl, X l , . . . ,  xp, g) = Ix(Itx(t., tl . . . . .  h, x l , . . . ,  xp, Ix) - g). Applying the Cauchy 

formula we obtain 

K(tl ..... tl, q:1, '-', z,, IX)=Ko(Z I ..... z,)+l~K1(tl .... , tt) 
~1 t .  

= ~o I IP2( t )d t  + " "  + ~p f ¢P2(t)dt + g(HF(0)x°  
o up 

t t t. 

+tXoltPl(t)dt  + . . .  + lX l~ tp l ( t )d t -g  ) (2.5) 
o tt 

where F(t), t E T is the solution of Eq. (1.8) and tPl(t), 92(0, t ~ T are given by formulae (1.7) and (1.14). 
We introduce the vectors (1.15) and write system (2.4) in the form 

P(h ,  I.t) = 0 (2 .6)  

K(tj ..... t t, x I ..... xp,kt) 

P(h,[t) = ~ ' ( t j ,~.)b, ,  

II v' 2 , 

j = l , 2  ..... l 

i=1 ,2  ..... p 

From (2.5) 

P(h, IX)= Po(h)+ IXP~(h) 

Po(h)  = ¥ ' ( t j ,  ~,)b~ 

¥'(X,, L)b 2 
j12 i l l  
i=1 ,  2, . . . , p  0 "ll 

We define P(h, 0) = P0(h). Then the vector function P(h, Ix) is continuous together with all its partial 
derivative with respect to the components of the vector h in the domain II h - h0 II < e, 0 ~ IX < ~ ,  
where e, ~ are some sufficiently small positive numbers. 

Because the control ~°(t), t ~ T is admissible in problem (2.2) and ¥(t, ~ )  = ¥0(t), t ~ T, we have 
P(h0, 0) = P0(ho) = 0. The Jacobi matrix of system (2.6) has the form 

011 I2 = ~-~"~ (ho,  0) = 2 0 B 3 

B4 B5 

(2.7) 

where B = -(2~itP2(x0i), i = 1, 2, . . . , p). The remaining blocks of the matrix are given by (1.18). 
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The matrix (92(%/), i = 1, 2 , . . . ,  p)  has complete rank because it has the non-degenerate matrix 
(2.3) as a submatrix. From this and from Assumptions 2.2 and 2.3 it follows that the matrix I2 is non- 
degenerate. 

All the conditions of the implicit function theorem are therefore satisfied by system (2.6). The proof 
of Theorem 2 is completed in the same way as for Theorem 1. 

We now consider the algorithm for constructing an s-admissible s-optimal control for Problem 2.1. 
Using the method of undetermined coefficients described in the preceding section we construct non- 
degenerate systems of linear equations 

i2hl = _ p l ( h o )  ' i2h2 = - - ~ - ( h o ) h t  I h' o2P0 h h 
- 2  ' .... 

(2.8) 

for the sequential calculation of the vectors h 'k  = (tkl ,  . . . , t~,  Xkl, • . . ,  "Ckv, ~,'k) ( k  = 1, 2 , . . . ,  s + 1). 
Because 12 has the matrix structure (2.7) this system decouples. Thus the vector ~.1 satisfies the system 
BB4-1B5~.l = Kl(t01 . . . . .  tot), and xli  = ~'1 q32('1~0/)//~2 (1:0/) f i  = 1, 2 . . . .  , p ) .  

Solving system (2.8) sequentially we find the vectors h k (k = 1, 2 . . . .  , s + 1) and construct the 
polynomials 

s (s -D 
t~')(Ix) = ~Ix*t~, j = 1, 2, . . . ,  l; ~a-1)(Ix)= ZIxkxk/, i = 1, 2, . . . ,  p 

k=0 k=0 

The control us(t ,  IX) = u ( t ,  t ( s ) l ( i x ) , . . . ,  t(S)l(ix)), 1)s+l(t, IX) = D(t ,  " ~ X ( S + l ) ( ~ ) ,  . . . , ,~p(S+l)(ix)), t E T is 
an asymptotically s-admissible s-optimal control for problem (2.1). 

The constructed a~qmptotic approximations for the roots of system (2.4) can be used to solve problem 
(2.1) exactly for a specified value of Ix by taking them to be the initial approximations in a refinement 
procedure [1]. 

3. E X A M P L E  

Consider a problem of the form (1.1)-(1.4) 

x2(3)-~max, Xl=X2 + u, X 2 = - - X l d - ~ D ,  X l ( 0 ) = ' X 2 ( 0 )  = 1 

[ u( t )  [ <~ 1, [ D(t) I <~ 1, t ~ [0, 3],x1(3) = 0 (3.1) 

which models the COlqttrol process for the rotation of a dynamically symmetric rigid body by means of two 
torques. The OC for the basic problem switches at a single point t01 ffi 2.482170, taking the value -1 in the first 
constancy interval. (All calculations were performed to six decimal places.) The optimal control has the associated 
Lagrange multiplier ~0 -- -0.569685 and cocontrol Al(t ) = sin(t - t0x)/COS(3 - t0x), t ~ [0, 3]. The function A2(t ) = 
cos(t - t0D/cos(3 - t0D, t ~ [0, 3] vanishes at the unique point x01 = 0.911373. This case satisfies Assumptions 
1.1-1.3. The asymptotically 1-admissible 1-optimal control for problem (3.1) constructed using the algorithm given 
in Section I has the fon-n 

-1, t¢[0, t}l)(tt)[ {-1, t~[0, x01 [ 
~(t, a)= U0(t, ~)=- 

1, t~[t~l)0t), 3] 1, t~ [Xo l  , 3] 

where t~l)(IJ.) =/'01 + ~.1~11 and ill ---- 0.575443. 
The refinement procedure was used to find the optimal control u°(t,  ~t), ~°(t,  it), t ¢ ~0, 3] for problem (3.1) for 

I 0 0 u, the two values 0.1 and 3.01 of the small parameter. The controls u (t, 0.1), u (t, 0.I), u (t, 0.01), u°(t, 0.01), t e [0, 
3] switch at the points 2.533748, 0.962951, 2.487858 and 0.917061, respectively, with the value -I in the first constancy 
interval. Note that t~l)(0.1) -- 2.539714, t~D(0.01) -- 2.487924. 

Consider the problem 

x2(3)'-'>max, xl=x2 "+u, x2 = -Xl + D/~, xl(0)----x2(0) = 1 (3.2) 

l u(t) I <<- 1, I u(t) I <<- I, t ~ [0, 3], xi(3) = 0 

which differs from problem (3.1) only in that the control ~ is strong rather than weak. 
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The optimal control of the basic problem for this case switches at the point 1;Ol = 1.434207 and takes the 
value -1  in the first constancy interval. It corresponds to the Lagrange multiplier ~0 = 0.005004 and cocontrol 
a2(t) = sin(t - x01)/sin(3 - 1;01), t e [0, 3]. The function Al(t) = --cos (t - x01)/sin (3 - x01), t ~ [0, 3] only takes 
negative values. Assumptions 2.1-2.3 are satisfied. The asymptotically 0-admissible, 0-optimal control for problem 
(3.2), constructed with the help of the algorithm described in Section 2, has the form 

u~(t, IX) = -1, t ~ [0, 3], 9,(t, IX)={--ill te[0'1;[l)(P')[ 
t e [1;~I)(IX), 3] 

w h e r e  x~I)(IX) = 1;1701 d-  IX1;ll, I;11 = - 0 . 4 9 5 0 0 9 .  

According to Theorem 2, for sufficiently small IX the OC problem (3.2) has the following structure 

I -1,  t~ [0,1;x(IX)[ 
u°(t, IX)=-l ,  t e [o ,  31, ~°(t' IX)= 1, te[x~(IX), 31 (3.3) 

where 1;1(IX) = 1;~I)(IX) + O(IX2)" In this case system (2.4) has the form 

1 + cos 3 - 2 cos (xl - 3) + IX cos 3 = 0 

COS ('~1 --  3) + ~ sin ('171 --  3) = 0 
(3.4) 

The solution of  this problem when IX = 0.01 was found using the refinement procedure. It turned out that %1(0.01) 
= 1.429257, X(0.01) = 0.000054. For comparison %~D(0.01) = 1.429257, i.e. the switching point of  the asymptotically 
0-admissible 0-optimal control coincided to six decimal places with the OC switching point. When It = 0.1 system 
(3.4) has the following solution: x~ = 1.384693, ~.* = -0.044540. It follows from the maximum principle that for 
a control of  the form (3.3) to be optimal it is necessary for the Lagrange multiplier X(IX) to be non-negative. The 
sign of Z.* shows that the value tx = 0, 1 is insufficiently small, and the OC for problem (3.2) has a structure different 
from that of (3.3) for this value of IX. The optimal control u°(t, 0.1) should have one switch point tl(0.1) close to 
the final moment. In this case the refinement equation has the form 

1 + cos 3 - 2 c o s  ('171 - 3) + IX(COS 3 - 2 sin(t1 - 3)) = 0 

sin(t I - 3) - ~, cos (t I - 3) = 0, coS(1 ;  1 --  3) + ~, sin(x I - 3 )=0  

where !1 = 0.1. Solving this system by Newton's method, using the initial approximations tl = 3, Xl = x01, ~. = X0 
for the roots, we obtain tl(0.1) = 2.959538, xl(0.1) = 1.388742, 7L(0.1) = -0.040484. The control 

u°( t, 0 . 1 ) = I - I ,  t¢ [0 ,  4(0.1)[ u°( t, 0 . 1 ) = I - I ,  t~[0,  %1(0.1)[ 

[ 1, te[tl(0.1), 3] [ 1, t~[xl(0.1), 3] 

satisfies the maximum principle and is therefore the OC for problem (3.2) with m = 0.1. Note, for comparison, 
that tl(1) (0.1) = 1.384706. 

This  r e sea rch  was  ca r r i ed  ou t  wi th  the  f inancial  su ppo r t  o f  the  Repub l i c  o f  Belarus  F o u n d a t i o n  fo r  
Basic R e s e a r c h  (F61-264) .  
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